3 PENCONTRO NACIONAL H INVESTIGAÇÃO CLÍNICA & INOVAÇÃO BIOMÉDICA

21 MAIO | ISCTE LISBOA

AGÊNCIA DE INVESTIGAÇÃO CLÍNICA E INOVAÇÃO BIOMÉDICA

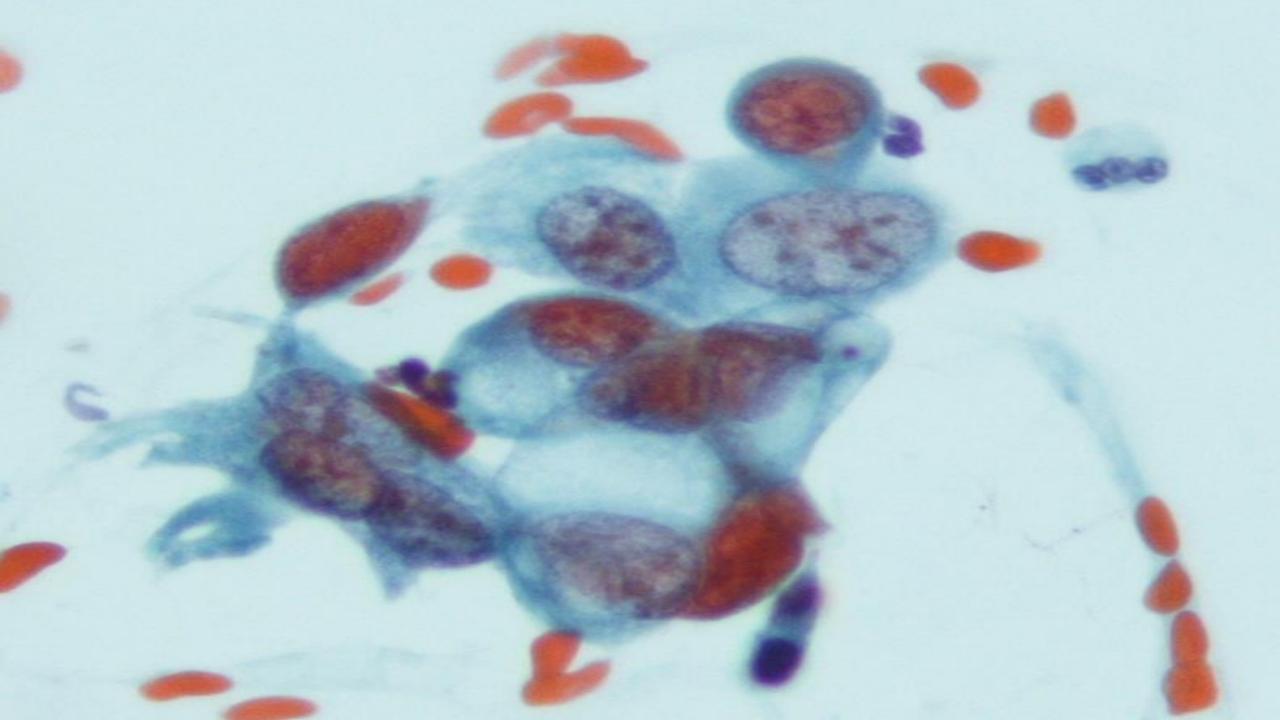
Avanços da Medicina Personalizada no Contexto da Inovação Biomédica

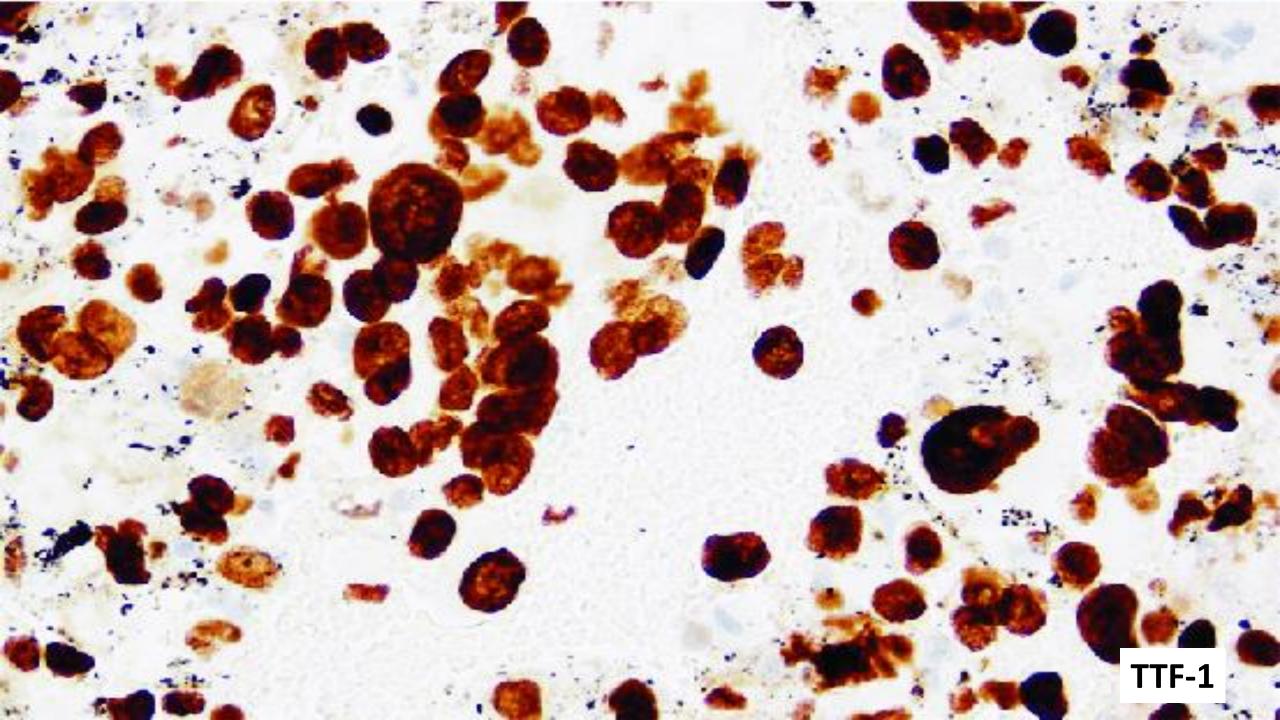
"Biomarcadores e Medicina Personalizada" uma estratégia para todos

FERNANDO SCHMITT

Professor of Pathology and Oncology, Medical Faculty of Porto University Director, RISE (Health Research Network) Head of Molecular Pathology Unit, IPATIMUP President of The International Academy of Cytology







What to do now?

In addition to clinical considerations, the decision depends on:

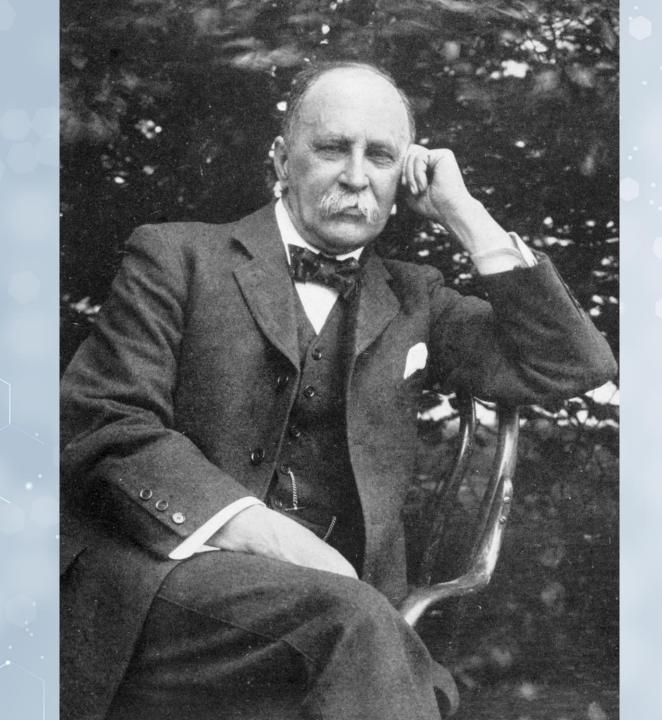
The patient's location: continent,

country, region

- Availability of good material for analysis
- Accessibility of tests
- Financial circumstances
- Availability of treatment



Precision Medicine and Biomarkers



Cancer diagnosis is morphological

"The GOOD physician treats the DISEASE; the GREAT physician treats the PATIENT with the disease."

Sir William Osler

EGFR T790M mutation testing should be performed in patients with NSCLC who have progressed on 1st/2nd generation EGFR TKIs

Patient diagnosed with EGFR-sensitising mutation positive NSCLC

1st/2nd generation EGFR TKI

EGFR T790M mutation testing should be performed in EGFR mutant advanced NSCLC patients that have progressed on treatment with 1st / 2nd generation EGFR TKIs

Pathology is Evolving to Meet Patient Needs and Be a Central Driver of Personalized Healthcare

Gross Pathology	Cellular Pathology	Morphologic Pathology	Molecular/Predictive Pathology
Antonio Benivieni (1443-1502):	Leeuwenhoek (1632-1723):	Morphologic classification of cancer	Comprehensive molecular tumor profiling
First autopsy Giovanni Morgagni (1682-1771): Correlated patient symptoms to	Developed 1st microscope Virchow (1821-1905): Recognized that diseases arise from	Pathologists provide diagnostic and prognostic information Hematoxylin and eosin is	Pathologists provide personalized medicine/predictive biomarker information
autopsy findings John Hunter (1728–1793): Devised method for preserving tissue	alterations within tissues and cells	'primary stain' for all cases	Proteomic and genomic data in the context of morphology
Bichat (1771-1802): 'Father of modern pathology"			
		and a state of the	
A Company		Coo - Coo	3

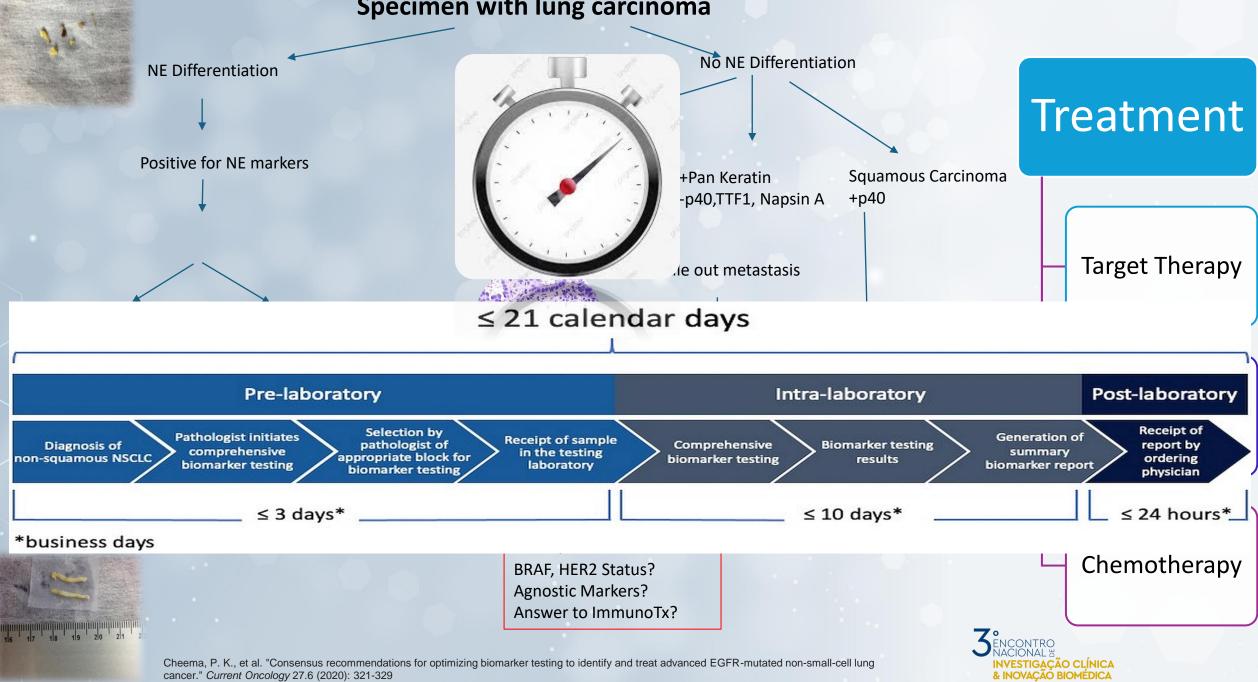
Sencontro Nacional #

Precision Oncology/Biomarkers More biology from smaller samples

Smaller tumours/targets

Smaller samples

Cytology or blood sample



More biology

Hotspo	ot genes	Copy number variants	Fusion drivers
35 g	jenes	19 genes	23 genes
	DNA		RNA
AKT1	JAK1	ALK	ABL1
ALK	JAK2	AR	ALK
AR	JAK3	BRAF	AKT3
BRAF	KIT	CCND1	AXL
CDK4	KRAS	CDK4	BRAF
CTNNB1	MAP2K1	CDK6	EGFR
DDR2	MAP2K2	EGFR	ERBB2
EGFR	MET	ERBB2	ERG
ERBB2	MTOR	FGFR1	ETV1
ERBB3	NRAS	FGFR2	ETV4
ERBB4	PDGFRA	FGFR3	ETV5
ESR1	PIK3CA	FGFR4	FGFR1
FGFR2	RAF1	KIT	FGFR2
FGFR3	RET	KRAS	FGFR3
GNA11	ROS1	MET	MET
GNAQ	SMO	MYC	NTRK1
HRAS		MYCN	NTRK2
IDH1	[PDGFRA	NTRK3
IDH2		PIK3CA	PDGFRA
	-		PPARG
			RAF1
			RET
			ROS1
	•		

& INOVAÇÃO BIOMÉDICA

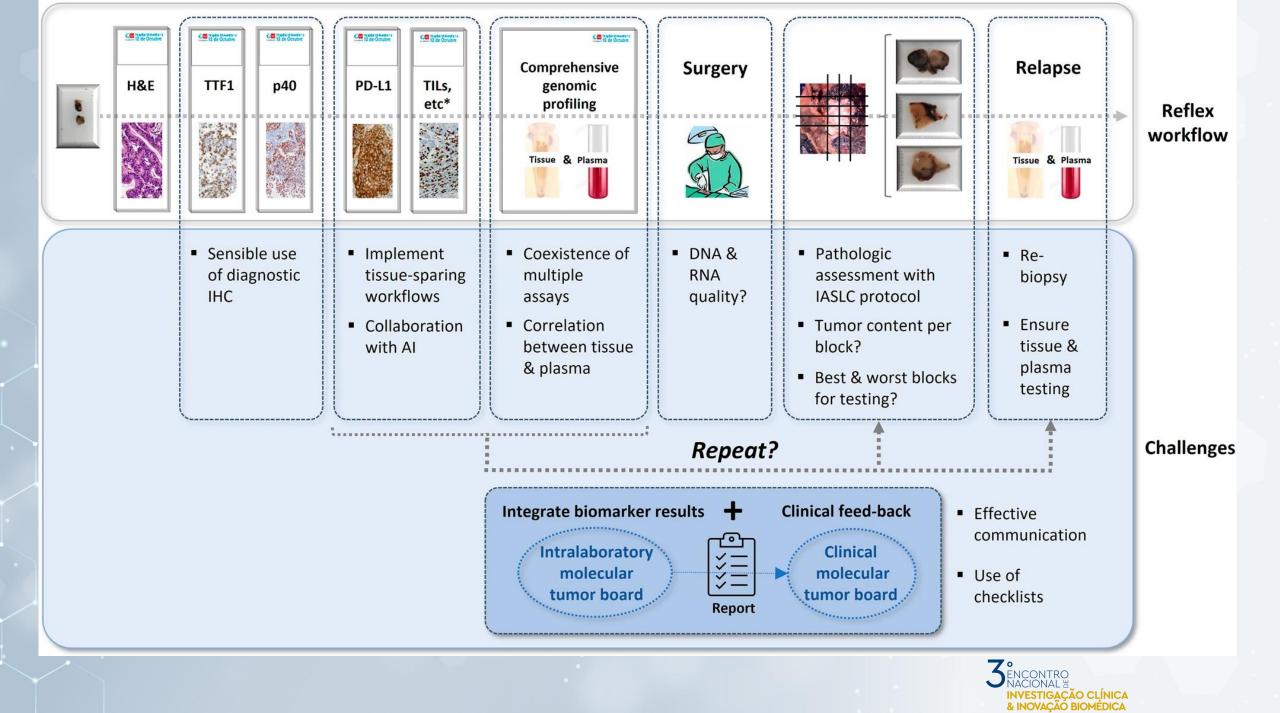
Specimen with lung carcinoma

Which technology should be used for mutation testing?

Any validated.

- However, multiplexed genetic testing with NGS is strongly recommended over single-gene testing.
 - Cheaper
 - Quicker
 - Sample-friendly
 - Sensitive

Library generation	
STEP 1 - Barcoding	
STEP 2 - Amplification	
_	
generation	(EC) ATCCATCAGTCACCTAGGTACCGATTACCTTACHG AVCCATCCATTCCANATCGGGA (C) ATCCATCAGTCACCTAGGTACCCGATTACCTTACHGAGATCCGATCC
	ATCGATCAGGTAGGGTACCCGATTACCTTACAGGATCCGATCCATTCGAAATCGGGA
random barcode mix	🧰 🛑 unique barcodes 🛛 🔲 sequencing adaptors


What type of sample can be used at the diagnosis stage?

- Surgical specimens
- Tissue biopsies
- Cytology specimens, with adequate cellularity.

Plasma samples (liquid biopsies), if other sample is not available or if rebiopsy is not feasible.

ROLE OF PATHOLOGIST

- Pre-analytics
- Diagnosis and select of correct material (quality/quantity).
- Use of "in situ" based techniques.
- Integrated Molecular Pathology Translation to the clinicians.
- Education.

Schmitt FC. Cytopathology 2011, 2019 Roy-Chowdhuri S. Arch Pathol Lab Med 2016

We need to actively participate in the process of Specimen Acquisition

- Good communication with clinicians, lab technicians, cytotechs, nurses...
- Providing a clear order form
- Using image-guided procedure for better yield
- Optimizing technique for best diagnostic yield (FNA sampling technique, needle size, number of passes...)
- ROSE

Go where the fresh material is...

Molecular/biomarker testing in lung cytology: A practical approach

Fernando Schmitt MD, PhD, FIAC^{1,2,3} | Maria D. Lozano MD, PhD, MIAC^{4,5,6}

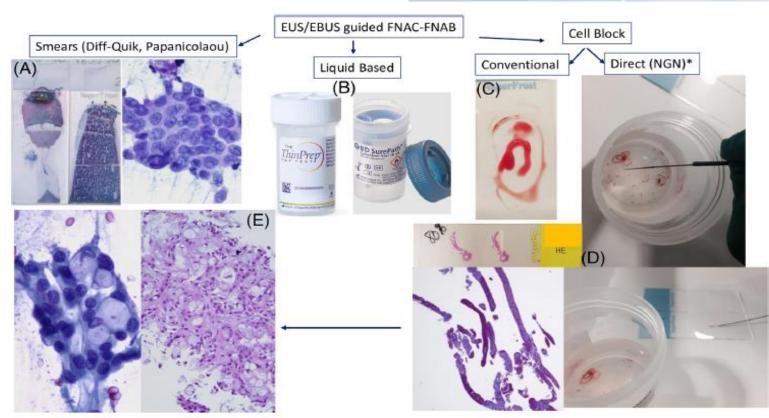
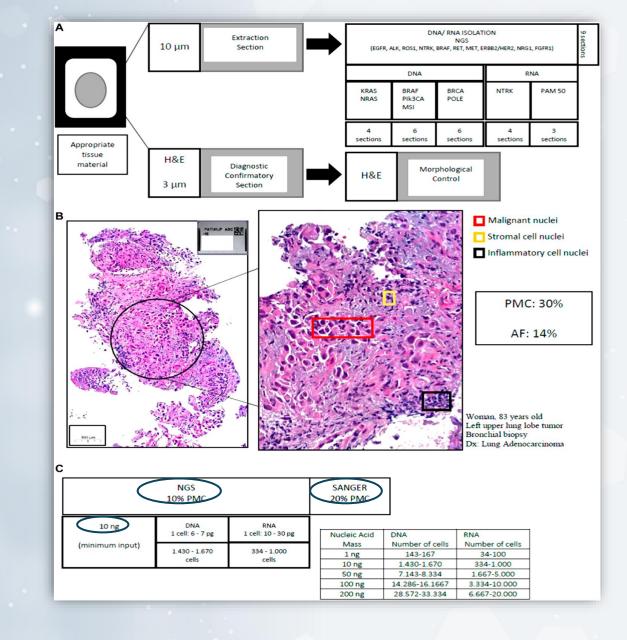


FIGURE 1 Diversity of types of cytological samples obtained from minimally invasive procedures. (A) Smears; (B) liquid based cytology; (C) conventional cell block; (D) direct cell block using new generation needles*; (E) cyto-histological correlations

WORKFLOW OF ROSE

TABLE 1 Type of cy efficiency	tology samples, fixa	tives, and ICC results and
Type of cytological samples	Fixative	Results
Cellblock	Formalin	Comparable results to surgical samples/ biopsies
Pap-stained smears	Alcohol 96°	Comparable results to surgical samples/ biopsies
Unstained smears	Alcohol 96°	Slightly lower but OK
DQ and air-dried smears	No fixative	High rate of false—Low intensity of immunostaining
Liquid based	Methanol-based fixatives	High rate of false—Low intensity of immunostaining


Tissue management in precision medicine: What the pathologist needs to know in the molecular era

Ricella Souza da Silva¹, Regina Pi Fernando Schmitt^{1.2,3}* Frontiers in Molecular Biosciences PUBLISHED 26 October 2022 DOI 10.3389/fmolb.2022.983102

Morphological control for molecular testing

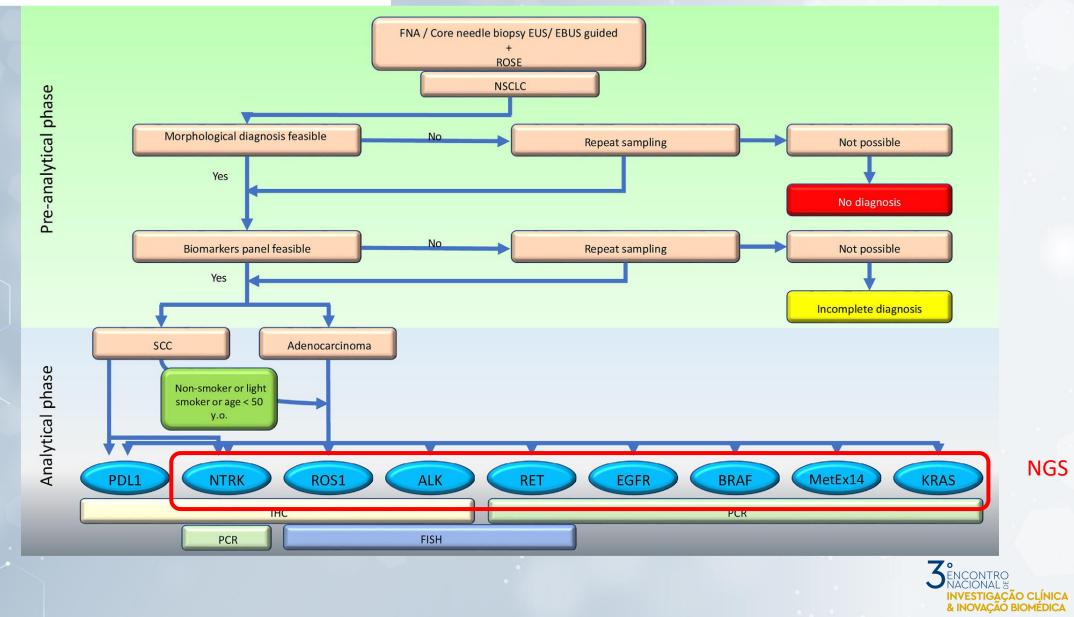
frontiers

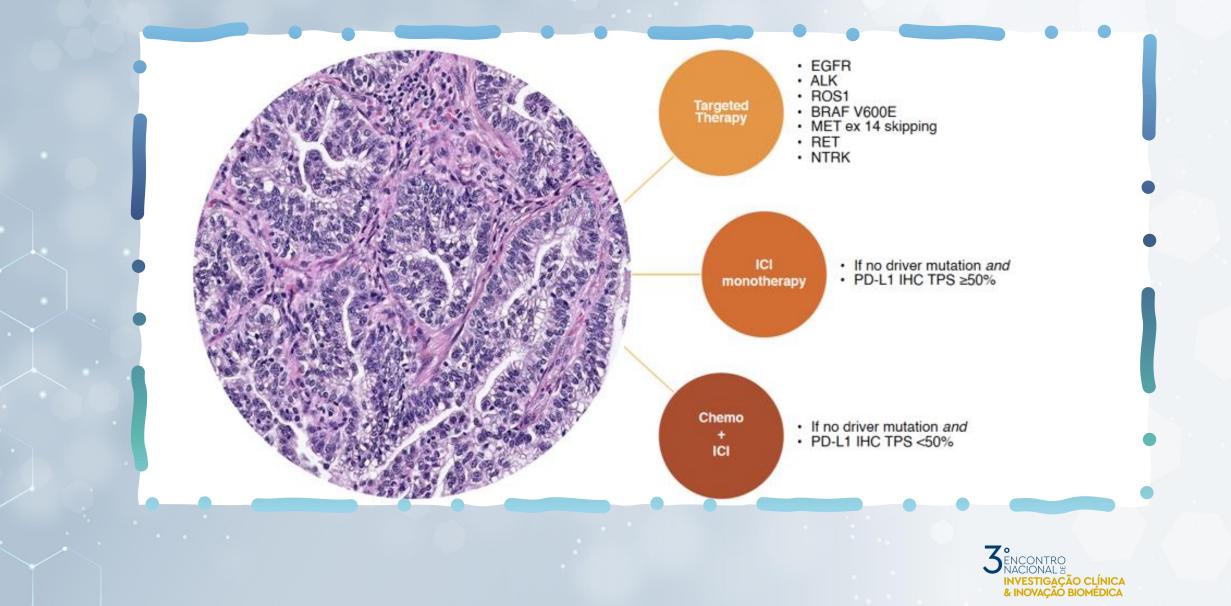
- Fraction of malignant cells greater than 10%– 20% is considered a lower acceptable limit for molecular methods.
- In cytology material samples with <100 cells are not suitable for NGS; 100-2000 low levels; 2000-5000 intermediary levels; >5000 cells are suitable for any NGS, including large panels.
 - The coverslip is removed using xylene if crystal coverslip is used or acetone if plastic and the selected cells on the slide are transferred into buffer medium for nucleic acid extraction without need of destaining the slides.
 - Single Slide: Scanning and digital archiving is mandatory to ensure medical-legal issues

If it is possible to choose

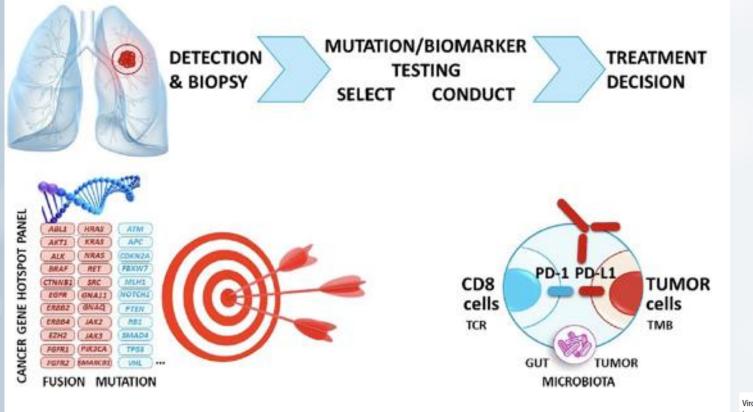
Molecular analysis on the most Recent Sample Avoid tissue sample with scarce material: history of larger immune staining and/or molecular test

AIM

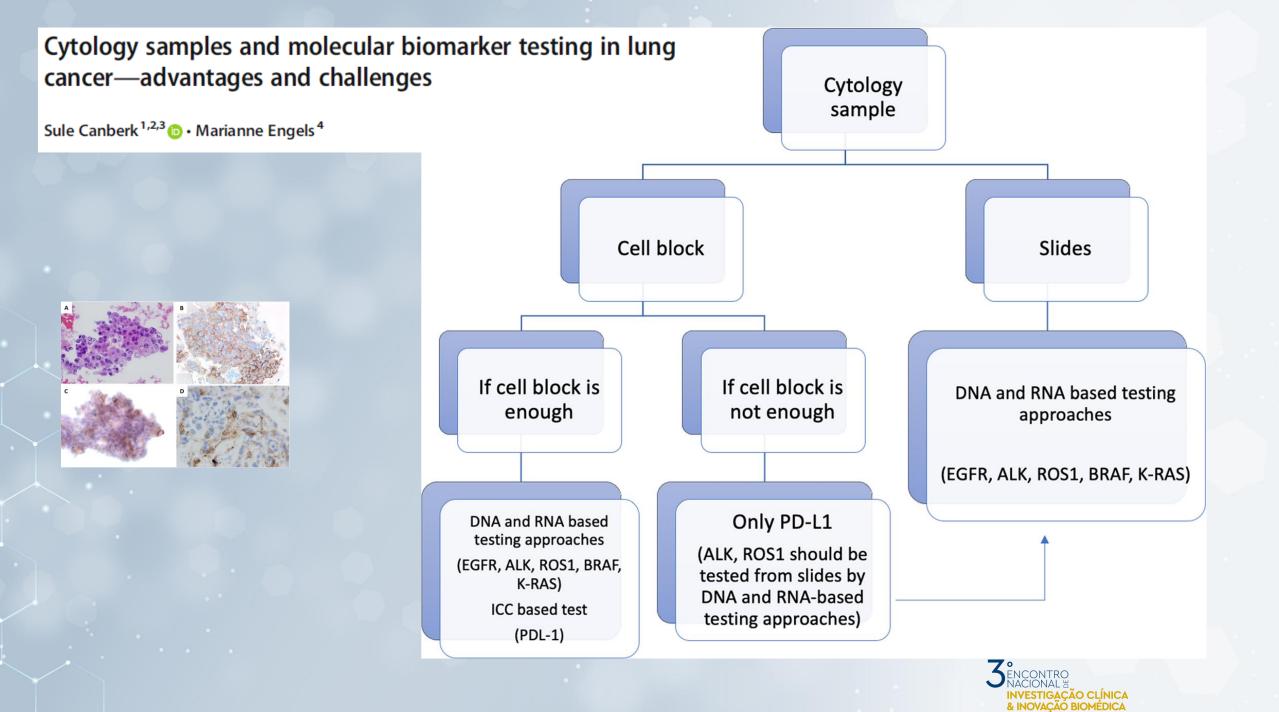

Samples with the highest amount of material


MOLECULAR CYTOPATHOLOGY

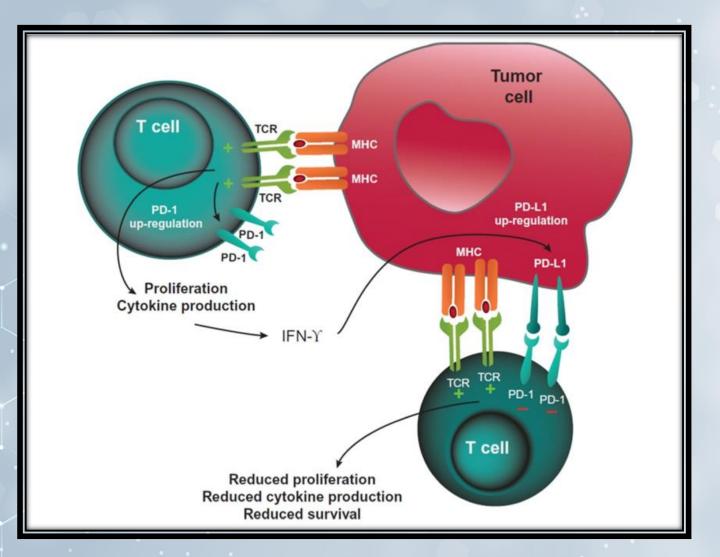
Molecular/biomarker testing in lung cytology: A practical approach


Fernando Schmitt MD, PhD, FIAC^{1,2,3} | Maria D. Lozano MD, PhD, MIAC^{4,5,6}

NSCLC: options for first-line therapy



COMBINED BIOMARKERS FOR TARGETED THERAPY AND IMMUNOTHERAPY IN THORACIC ONCOLOGY



Virchows Archiv https://doi.org/10.1007/s00428-023-03651-1

PD-1 mediated inhibition of T cells

- Anti-PD-1 therapy blocks PD-1 on the T cell, thus, the tumor cell cannot use PD-L1 to inactivate the T cell.
- Anti-PD-1 therapy enables T cells to stay active and attack the tumor.

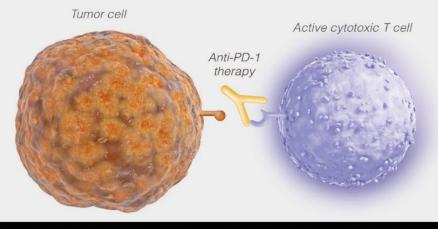
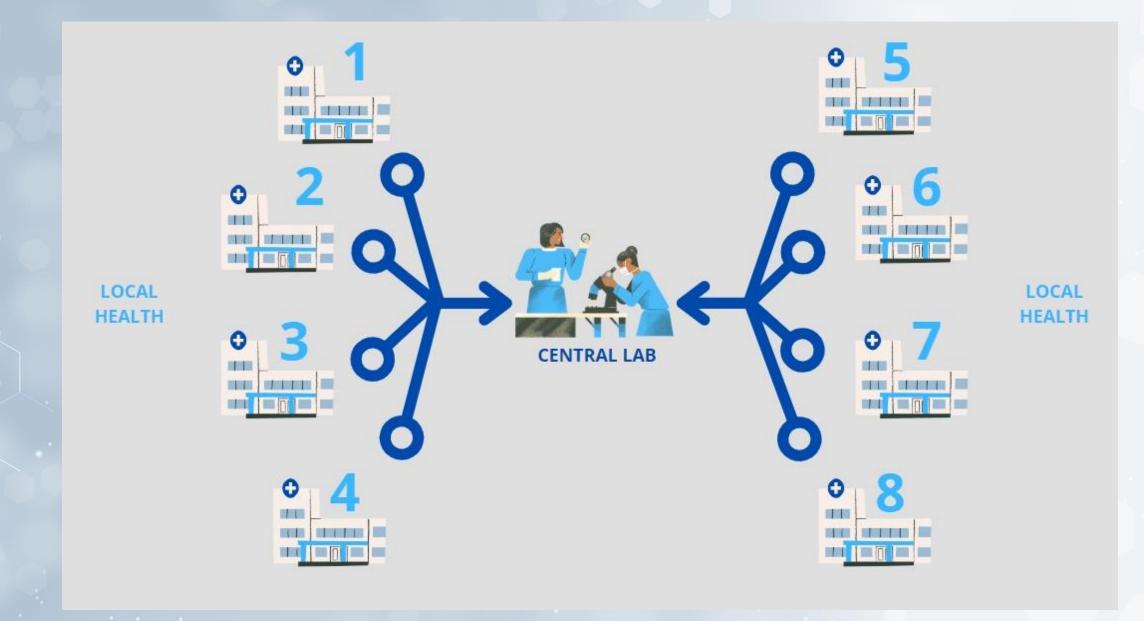


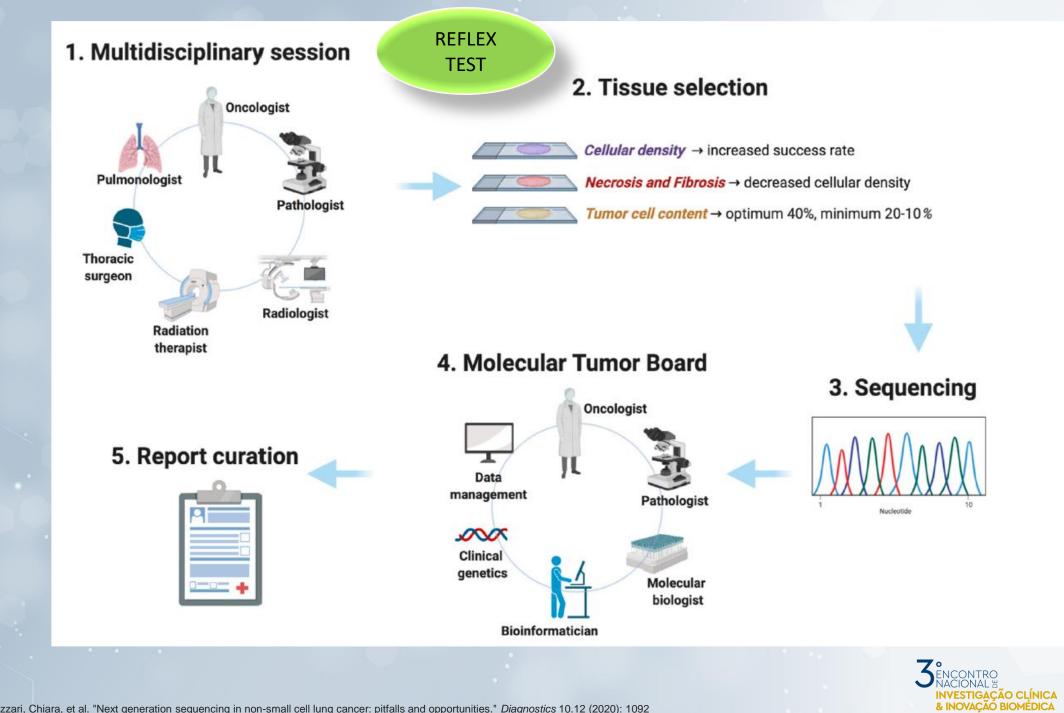
Figure 3: Blocking the PD-1/PD-L1 interaction helps to enable active T cells and tumor cell death and elimination

Curr. Oncol. 2022, 29, 479-489.

Predictive biomarkers for targeted therapies and immunotherapies in non-small cell lung cancer


Manda		nd highly recommended Jular biomarkers	mol	Emerging ecular biomarke	ers		ory and po ular bioma	
MANDATORY ESCAT I MET	ALK	Fusion Mutation as a mechanism of resistance	Predictive biomarkers for TARGETED THERAPY ESCAT III	BRAC1 BRAC2	Mutation	Predictive biomarkers for TARGETED THERAPY	TP53 RB1	Mutation
	BRAF	V600E mutation		FGFR	Fusion Mutation		RBM10	Mutation
	EGFR	Common mutation: Del19, L858R Uncommon mutation: G719X, L861Q, S7681 T790M mutation		HER2, HER3 B7-H3 CEACAM5 MET, TROP2	Protein expression		AKT CTNNB1 JAK2/3	Mutation
	MET	Mutation exon 14 skipping		РІЗКА	Mutation		NRAS	Mutation
	NTRK	Fusion		NRG1	Fusion		HRAS	Mutation
	RET	Fusion	Predictive biomarkers for IMMUNO THERAPY	KEAP1	Mutation	Predictive biomarkers for IMMUNO THERAPY	High TCR clonality High CD8 density High dNLR/LIPI Adequate microbiota Gut and tumor DNA, metabolites, products	
ROS	ROS1	Fusion Mutation as a mechanism of resistance		МТАР	Protein expression			
Highly HER RECOMMENDED KRA ESCAT II	EGFR	Exon 20 Insertion		NOTCH	Mutation			
	HER2	Mutations		STK11	Mutation			
	KRAS	G12C mutation		SMARCA4	Mutation			
	MET	Amplification		тмв	Mutations			

Virchows Archiv https://doi.org/10.1007/s00428-023-03651-1


Personalized Medicine and Biomarkers Key Features

3 NACIONAL ^{III} INVESTIGAÇÃO CLÍNICA & INOVAÇÃO BIOMÉDICA

Lazzari, Chiara, et al. "Next generation sequencing in non-small cell lung cancer: pitfalls and opportunities." Diagnostics 10.12 (2020): 1092

Review

What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy Integrative approach

jand biopst

Paul Hofman ^{1,2}D

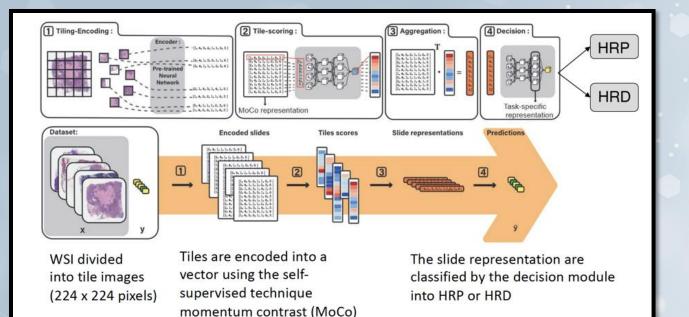
Gene fusion & amplification assessment (DNA or RNA NGS): Be aware of the sensivity Mutation assessment (DNA or RNA NGS): Be aware of the clonal hematopoiesis TMB (DNA NGS): To be better validated in different series CH01085

No PD-L1 evaluation in routine practice

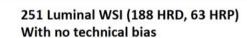
PD-L1 IHC: Evaluation on tumor and immune cells ALK, ROS1, BRAFV600E, NTRK, BRG1 and NUT IHC Gene fusion assessment (FISH, DNA or RNA NGS) Mutation assessment (DNA or RNA NGS) TMB (DNA NGS)

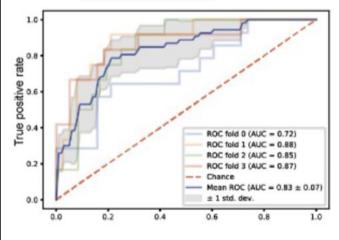
Histology

Gene fusion assessment (FISH, DNA, or RNA NGS) Mutation assessment (DNA NGS) TMB (DNA NGS)


PD-L1 ICC: Need at least 100 tumor cells for PD-L1 evaluation No evaluation on immune cells ALK, ROS1, BRG1 and NUT ICC

Virchows Archiv https://doi.org/10.1007/s00428-023-03651-1





Anne Vincent-Salomon Department of Pathology Institut CURIE Paris, France

Artificial Intelligence and Breast Cancer Diagnostics

AUC = 0.83

Sensitity: 88% Specificity: 57% Positive predictive value: 86%

	Ground Truth = genomic status Luminal (n= 251)		
Al Prediction	HRD	HRP	
HRD	166	27	
HRP	22	36	
Total	188	63	

Conclusions of this study

 Homologous recombination deficiency is predictable from H&E slides with high accuracy

INVESTIGAÇÃO CLÍNICA & INOVAÇÃO BIOMÉDICA

Opening the black box for pathologists is important !

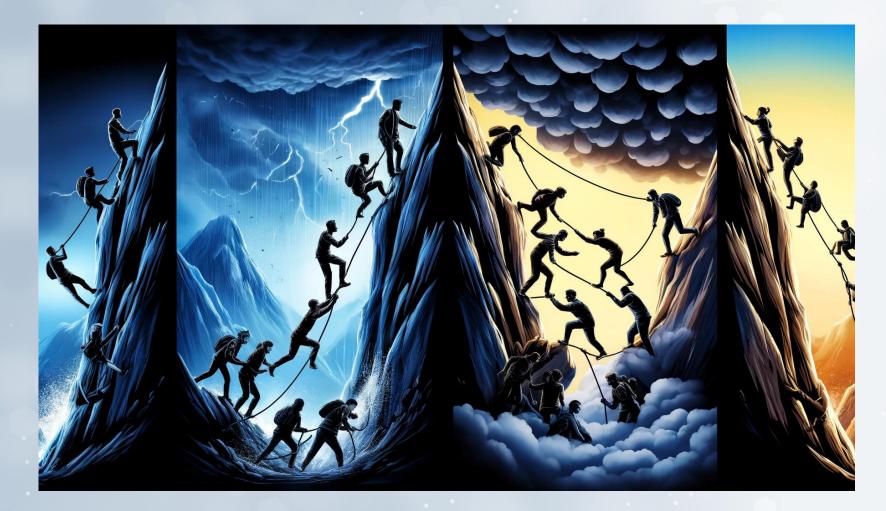
It means to visualize the TILE features that weighted in the algorithm

- To understand the features that weighted the most to predict the label
- To pave the path of MACHINE TEACHING !

Anne Vincent-Salomon Department of Pathology Institut CURIE Paris, France

Artificial Intelligence and Breast Cancer Diagnostics

REVIEW


Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular **Tumor Boards**

R. Danesi¹, S. Fogli^{1†}, S. Indraccolo², M. Del Re¹, A. P. Dei Tos³, L. Leoncini⁴, L. Antonuzzo⁵, L. Bonanno⁶, V. Guarneri^{6,7}, A. Pierini⁸, G. Amunni^{9*} & P. Conte^{6,7}

Precision Medicine, to be Precise, needs Pathology

Table 1. Biomarke	ers and available drugs			
Name of marker	Druggable/actionable alterations	Tumor type	Predictive value, LoE (e.g. available	FDA-approved liquid biopsy CDx test
EGFR/ErbB1	Mutations (e.g. L858R, ex19del, T790M)	NSCLC	1 (gefitinib, erlotinib, afatinib, osimertinib, dacomitinib)	Yes
HER 2/ErbB2	Amplification	Breast	1 (trastuzumab, T-DM1, trastuzumab - pertuzumab, lapatinib, neratinib)	No
	Amplification	Esophagogastric	1 (trastuzumab)	No
	Point mutations (V659E)	NSCLC	3A (lapatinib)	No
c-Met	ex14 skipping mutations, amplification	NSCLC	 (crizotinib, capmatinib, savolitinib*, tepotinib) 	No
RET	Fusion	NSCLC	1 (selpercatinib, pralsetinib), 2A (cabozantinib), 3A (vandetanib)	No
ALK	Fusion	NSCLC	1 (crizotinib, alectinib, ceritinib, lorlatinib), 3A (brigatinib)	Yes (alectinib)
	Mutations (L1196M, L1196Q)	Soft tissue sarcoma	2A (crizotinib, ceritinib)	No
ROS1	Fusion, mutation	NSCLC	1 (crizotinib, entrectinib)	No
NTRK	Fusion	All tumors	1 (larotrectinib, entrectinib)	No
c-Kit	Mutations (e.g. 449_514mut), deletions (e.g. D419del)	GIST	1 (imatinib, sunitinib, regorafenib), 2 (sorafenib)	No
		Thymic tumors	2A (sunitinib)	No
	SAMPLES	Melanoma	2A (imatinib)	No
PDGFR	FFPE del)	GIST	2A (imatinib, dasatinib)	No
	FFFE	Leukemia, myelodysplasia	1 (imatinib)	No
FGFR1		LSCC	3A (erdafitinib)	No
	CYTOLOGY	NSCLC	3A (AZD4547)	No
FGFR2		Bladder, cholangiocarcinom		No
	Amplification	Breast	3A (dovitinib)	No
FGFR3	Fusion, mutation	Bladder	1 (erdafitinib)	No
RAS	Wild-type	CRC	1 (cetuximab, panitumumab)	No
BRAF	Mutations (e.g. V600E)	Melanoma	1 (vemurafenib, dabrafenib, trametini ¹ , combo), 3A (trametinib)	No
		NSCLC	1 (dabrafenib + trametinib)	No
		Histiocytosis	3A (cobimetinib)	No
	Mutation (V600E)	CRC	1 (encorafenib + cetuximab)	Yes
	Fusions	Ovarian	3A (trametinib, cobimetinib)	No
MEK	Mutations	Melanoma, NSCLC, ovarian, histiocytic disorder	selumetinib)	No
mTOR	Mutations (e.g. E2014K)	Bladder, RCC	3A (everolimus, temsirolimus)	No
AKT	Mutation (E17K)	Breast, ovarian	3A (capivasertib)	No
PTEN	Homozygous deletions, loss-of-function mutations	Breast	2A (capivasertib)	No
PIK3CA	Mutations	Breast	1 (alpelisib)	Yes
CDK4	Amplification	Soft tissue sarcoma	2A (palbociclib)	No
IDH1	Mutations	AML, cholangiocarcinoma	1-3A (ivosidenib)	No
IDH2	Mutations	AML	1 (enasidenib)	No
BRCA1/2 and ATM		Breast	1 (olaparib, talazoparib, rucaparib)	No
	Mutations (somatic)	Ovarian, prostate	1 (rucaparib, olaparib)	Yes
ERα	Mutations (e.g. E380Q)	Breast	2A (fulvestrant)	No
MSI-H	Not applicable	All	1 (pembrolizumab)	Yes
TML	Not applicable	Multiple tumor types	1 (pembrolizumab, nivolumab)	No

Cooperating is tougher than competing.

RISE

Health Research Network From the Lab to the Community

PORT

•

THANK YOU Molecular Pathology Unit fschmitt@ipatimup.pt @fcshmitt


FERNANDO SCHMITT

RISE – HEALTH RESEARCH NETWORK

